If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49r^2-35r=0
a = 49; b = -35; c = 0;
Δ = b2-4ac
Δ = -352-4·49·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-35}{2*49}=\frac{0}{98} =0 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+35}{2*49}=\frac{70}{98} =5/7 $
| 3K^2+16k+5=0 | | 1=r/9=4 | | G(-4)=2x+4 | | 7w=36+w | | x-4x=6-0,5x | | X+5/2=x+8 | | e=36 | | 7x0=82-12 | | -4x-3(3x+4)=-x-24 | | 14=-3x-2-3x=11 | | -5(z+1)=-2z+10−5(z+1)=−2z+10 | | 2x-3/9+x-3/2=-1+x+5/6 | | G(-5)=3x+2 | | 2x*3=0 | | 14x-2x+3=3(5x+9) | | (x+28)/5=3x | | 8x2=6+22x | | 14.8=0.28*x+2.2 | | 1.5=5/x | | -6x-4-7-13=-58 | | -4x-3(3x+4)=-x-25 | | 4(x)=17 | | -5x+5(6x-17)=40 | | 14x-2+10x+34=90 | | (3x-2/2)+5=10 | | 5x(2x*3)=0 | | -5(1+3r)=85 | | H(-4)=-x+1 | | 6+0.2p=8 | | 7x=25x-16=70 | | -100=6(-2r-2)+r | | 3|a-9|=36 |